
5 0 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E

infeasible to automatically identify conflicts
and cooperation among requirements. Fur-
thermore, conflicts and cooperation exist only
if the same part of the system realizes the re-
quirements. Unfortunately, attributes often
suggest otherwise, creating false conflicts.1

Adding to the complexity is the fact that as
systems evolve, new requirements emerge and
existing ones change.

Here, we investigate how requirements
traceability can help address these issues. RT
is the ability to describe and follow the life of

a requirement, forward and backward. We do
this by defining and maintaining relationships
to various artifacts created during system de-
velopment, such as stakeholder needs, archi-
tectural or design elements, or source code.2,3

RT facilitates communication, helps integrate
changes, preserves design knowledge,4 and
supports quality assurance. It’s thus beneficial
throughout the entire life cycle but particu-
larly important in iterative approaches, where
stakeholders frequently introduce and change
requirements.

Researchers have also recently used RT
techniques to better understand and monitor
persistent software attributes1,5 such as relia-
bility, scalability, efficiency, security, and us-
ability. Analyzing requirements using software
attributes can make conflicts and cooperation
instances more obvious, because changes in

focus
Identifying Requirements
Conflicts and Cooperation:
How Quality Attributes and Automated
Traceability Can Help

R
equirements about software attributes have numerous complex
and nontrivial interdependencies. Requirements conflict with each
other when they make contradicting statements about common
software attributes, and they cooperate when they mutually en-

force such attributes. Because software developers rarely apply formal re-
quirements specification techniques in practice, and because reliable tech-
niques for natural language understanding aren’t available, it’s generally

persistent software attributes

In software development and maintenance, identifying conflicts and
cooperation among requirements is challenging. Fortunately, quality
attributes can help. In addition, automated traceability techniques
can eliminate falsely identified conflicts and cooperation efficiently.

Alexander Egyed, Teknowledge Corp.

Paul Grünbacher, Johannes Kepler Universität Linz

Copyright © 2004 IEEE.
Reprinted from IEEE
Software. This material
is posted here with per-
mission of the IEEE.
Such permission of the
IEEE does not in any
way imply IEEE endorse-
ment of any products or
services. Internal or per-
sonal use of this mate-
rial is permitted. How-
ever, permission to
reprint/republish this
material for advertising
or promotional pur-
poses or for creating
new collective works for
resale or redistribution
must be obtained from
the IEEE by sending a
blank email message to
pubs-permissions@
ieee.org.

quality often cause certain functional changes
that in turn affect other quality attributes. For
example, we know that checking user inputs
increases correctness but also increases costs
and decreases performance.

Our system builds on existing RT research
(see the “Related Work” sidebar). It identifies
requirements conflicts and cooperation using
software attributes and eliminates false con-
flicts and cooperation automatically with the
help of a trace analysis technique.

Video-on-demand’s conflicting
requirements

We demonstrate the need for our approach
in the context of a simple video-on-demand sys-
tem. The system we used provides capabilities
for searching, selecting, and playing movies.6

The “on-demand” feature supports playing a
movie while concurrently downloading its data
from a remote site. This system provides an in-
teresting challenge because its complex compu-
tational logic is well hidden beneath a simple
VCR-like user interface (with play, pause, and
stop buttons). Both functional and nonfunc-
tional issues are fundamental in defining the
VOD system’s requirements. Table 1 shows an
excerpt of these requirements, including soft-
ware attributes taken from ISO 9126.7

When analyzing trade-offs among these re-
quirements, the developer must understand

how the requirements affect one another. For-
tunately, many rules of thumb exist to help
with this process. One such rule is that a sys-
tem’s ability to recover from errors typically
makes the system more useable by preventing
abnormal program behavior—this would be
an instance of cooperating requirements. A
rule of thumb regarding conflicting require-
ments is that new functionality typically re-
quires additional resources in computation
and space, potentially conflicting with a re-
quirement demanding high efficiency—for ex-
ample, a short response time.

Figure 1 illustrates an example of two con-
flicting VOD system requirements in terms of
their software attributes. R1 is a functionality
requirement about playing a movie automati-
cally after a user selects it (the user needn’t
press the play button). R6 is an efficiency re-
quirement requesting a maximum delay of one
second when starting a movie. Additional
functionality usually lowers efficiency, and we
can see a potential conflict between R1 and
R6 when only looking at the conflicting at-
tributes (see the red arrow in Figure 1a).

Software attributes define types of require-
ments, and existing work gives heuristics on
conflict and cooperation among them.8,9 Un-
fortunately, we can’t decide automatically
whether this potential conflict is true because
there’s no evidence that increased functional-

N o v e m b e r / D e c e m b e r 2 0 0 4 I E E E S O F T W A R E 5 1

To create software attributes that persist over a software
system’s lifetime, you must first understand how a system’s
attributes interact. Because every functional requirement is
in effect a complex request for execution-time resources,
such requirements can interact in unexpected ways that
undermine complex and crosscutting properties such as per-
formance, security, reliability, and other “-ilities.” Identifying
requirements conflicts that damage -ilities can be difficult
even for a small, fixed set of requirements, and it can
quickly become unmanageable if you add requirements
without any strategy.

This article by Alexander Egyed and Paul Grünbacher
addresses the requirements-phase PSA problem by defining
a method to control growth in the complexity of require-
ments resolution, so that developers can recognize require-

ments conflicts that might damage -ilities before implement-
ing them. Their method is based on the idea that require-
ments can conflict only when they translate into activities
within the same region of the overall system. They show how
requirements traceability can help you identify such overlaps
without having to consider every possible (n2) pairing of re-
quirements. For methods such as agile programming that
produce executable artifacts early in the development
process, they discuss how you can partially automate such
RT methods to further simplify the process of identifying po-
tential conflicts. The net result is an ability to produce sys-
tems that are more easily and more provably able to pre-
serve critical -ilities over their deployment life spans.

—Terry Bollinger, Jeffrey Voas, and
Maarten Boasson, guest editors

WHY READ TH IS ART ICLE?

ity can’t easily be satisfied within a given effi-
ciency constraint (or the contrary). Because
such evidence is hard to elicit automatically, it
thus seems attractive to derive conflicts among
requirements based on whether the require-
ments’ software attributes contradict each
other. If the attributes are indifferent toward
one another or if they’re cooperative, then a
given set of requirements don’t conflict.

Given that there are up to n2 conflicts
among n requirements, this approach signifi-
cantly reduces the large number of potential
conflicts. However, several disadvantages exist:

� Because attributes can affect each other in
many obscure and nontrivial ways, they
can identify potential conflicts and coop-
eration instances not applicable to a par-
ticular system (false positives).

� The number of potential conflicts, even if
correct, could be enormous, leaving the
engineer with the time-intensive and error-
prone task of identifying true conflicts and
cooperation.

� Because no single stakeholder has com-
plete knowledge of all requirements, iden-

5 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Our work relates to existing research on investigating the
complex interdependencies among system attributes.

Trade-off analysis
Barry W. Boehm and Ho Peter In have investigated the impact

of quality changes in their Quality Attribute Risk and Conflict
Consultant research for trade-off analyses. QARCC also relates
different quality effects to various stakeholder groups. For exam-
ple, performance and usability concern users whereas customers
are interested in performance, maintainability, cost, and sched-
ule. Developers would be mainly concerned with maintainability.1

Modeling persistent attributes
Lawrence Chung and his colleagues have discussed how

properties such as modifiability and performance can be mod-
eled as “soft goals” and how different architectural designs
support these goals. In their approach, architectural decisions
can be traced back to stakeholder goals.2,3

Aspect-oriented software development
AOSD is an approach supporting the separation of con-

cerns. It provides explicit concepts to modularize crosscutting
concerns and compose these with the system components.4

Automated techniques
Andrea Zisman and her colleagues have presented an ap-

proach for automatically generating and maintaining traceability
relations based on rules. The artifacts and rules are described in
XML and supported by a prototype tool.5 The approach has also
been applied to organizational models specified in i* and soft-
ware systems models represented in UML.6

References
1. B.W. Boehm and H. In, “Identifying Quality-Requirement Conflicts,” IEEE

Software, vol. 13, no. 2, 1996, pp. 25–35.
2. L. Chung, D. Gross, and E. Yu, “Architectural Design to Meet Stakeholder

Requirements,” Software Architecture, P. Donohue, ed., Kluwer, 1999, pp.
545–564.

3. L. Chung et al., Non-Functional Requirements in Software Engineering,
Kluwer, 2000.

4. T. Elrad, R.E. Filman, and A. Bader, “Aspect-oriented Programming,”
Comm. ACM, vol. 44, no. 10, 2001, pp. 28–97.

5. G. Spanoudakis et al., “Rule-based Generation of Requirements Traceability
Relations,” J. Systems and Software, vol. 72, no. 2, 2004, pp. 105–127.

6. F.G. Cysneiros, A. Zisman, and G.A. Spanoudakis, “Traceability Approach
for i* and UML Models,” Software Eng. for Large-Scale Multi-Agent Sys-
tems Workshop Report (SELMAS 03), to be published in ACM Software
Eng. Notes; http://whitepapers.zdnet.co.uk/0,39025945,60093304p-
39000629q,00.htm.

Related Work

Table 1
Video-on-demand requirements

Requirement Attribute

R0: Download movie data on demand while playing a movie Functionality

R1: Play movie automatically after selecting from list Functionality

R2: Display textual information about a selected movie Functionality

R3: Pause a movie Functionality

R4: Three seconds max to load movie list Efficiency (including

time behavior)

R5: Three seconds max to load textual information Efficiency (including

about a movie time behavior)

R6: One second max to start playing a movie Efficiency (including

time behavior)

R7: Use the major system functions (selecting, Understandability

playing, pausing, stopping movie) without training

R8: Allow users to stop a movie Functionality

R9: (Re-)start a movie Functionality

R10: Avoid image degradation caused by temporary Reliability (including

network-load fluctuations maturity)

R11: Only authorized users get access to movies Security

R12: Automatically reestablish link to movie server within Recoverability

5 seconds in case of failure during streaming

tifying true conflicts would involve nu-
merous stakeholders as well.

An obvious simplification is to use domain-
specific conflicts and cooperation among soft-
ware attributes. This reduces—but doesn’t
eliminate—these disadvantages.

So how can we further eliminate false con-
flicts and cooperation? Figure 1b shows two
requirements that don’t conflict even though
their software attributes do (a false conflict).
R2 is a functionality requirement stating that
users should be able to display information
about selected movies. We investigate it
against the previously discussed efficiency re-
quirement of providing playback services
within one second, and, on first glance, it
seems there’s the same kind of conflict be-
tween R2 and R6 as between R1 and R6 (Fig-
ure 1a). However, displaying movie informa-
tion isn’t done while selecting and starting a
movie—it’s implemented as an optional activ-
ity carried out either before or afterward—so
R2 isn’t restricted by the efficiency constraint.

If there’s no trace dependency between two
requirements, then they affect different parts
of the system and thus can’t affect one an-
other, even if they’re contradictory or cooper-
ative. So, knowledge about trace dependencies
helps eliminate false attribute conflicts and co-
operation, but we still need to manually inves-
tigate the remaining ones. For example, there’s
still a potential conflict between R1 and R6
because a trace dependency exists—both re-
late to starting a movie.

Investigating conflicts:
Our approach

Our approach is suited for identifying re-
quirements conflicts at any state in the life cy-
cle as long as we have as input requirements,
their attributes, and their traces. We assume
that any two requirements conflict or cooper-
ate only if their software attributes do the
same and a trace dependency exists between
them. If dependencies among requirements
aren’t available, then we generate them using
a scenario-based approach to trace analysis
that also requires test scenarios as input.10

Figure 2 depicts our approach schemati-
cally. It involves

1. Manually categorizing requirements into
software attributes

2. Automatically identifying conflicts and co-
operation among requirements based on
their attributes

3. Automatically generating trace dependencies
among the requirements (if not available)

4. Filtering out the attribute conflicts and co-
operation instances between requirements
where there’s no trace dependency

The approach supports the incremental explo-
ration of conflicts and cooperation by giving
developers the freedom to change require-
ments and their test cases and refine the hier-
archy of software attributes.

N o v e m b e r / D e c e m b e r 2 0 0 4 I E E E S O F T W A R E 5 3

R1: Play movie automatically
after selection

R6: One second max to
start playing a movie

Efficiency
(computation)

Functionality
causes

R2: Users should be able to
display textual information
about a selected movie

R6: One second max to
start playing a movie

Efficiency
(computation)

Functionality
causes

(a)

(b)

Figure 1. Conflicting
requirements based
on conflicting software
attributes: (a) a potential
conflict exists between
adding functionality and
maintaining efficiency;
(b) the same potential
conflict exists, but
because these attributes
don’t apply to the same
part of the system, this
particular instance is a
false conflict.

Requirements

Attribute
cooperation

among
requirements

Attribute
conflicts
among

requirements

Cooperation
among

requirements

Conflicts
among

requirements

Test scenarios

(3) Identify
dependencies among

requirements

(1) Categorize
requirements

Dependencies
among requirements

(2) Identify
cooperation and
conflicts among

requirements

(4) Filter out
cooperation and
conflicts among

requirements

Figure 2. Approach for identifying conflicts and cooperation among
requirements.

Categorizing requirements
This first (manual) step is often part of a re-

quirements definition process. We classify
each identified requirement using a taxonomy
of requirements (methods such as Volere11 or
international standards provide such tax-
onomies). Obviously, it helps to refine the tax-
onomies to address the specifics of particular
domains. For example, we could refine effi-
ciency into space and computational efficiency
to support more specific reasoning.

Identifying conflict and cooperation among
requirements

The next step is to analyze the requirements
using a generic conflict and cooperation model
such as the example shown in Table 2. This
model takes into account that attributes might
be indifferent to one another (0), cooperative
(+), or conflicting (–). (We adapted Table 2
from a wide range of literature on nonfunc-
tional requirements12 and ISO 9126.7)

Table 2 captures course-grained conflicts
and cooperation. The rows represent require-
ment attributes; the columns represent their

potential effects on other attributes and, con-
sequently, other requirements. For example, a
requirement that adds functionality likely has
a negative effect on efficiency (–), a require-
ment that increases recoverability likely has a
positive effect on usability (+), and a require-
ment that changes accuracy likely doesn’t af-
fect maintainability (0). A reverse effect
negates the values in the table—for example,
decreased security likely increases efficiency.

Where necessary, we can define subdimen-
sions to better match the needs of specific do-
mains or projects. For example, subdividing
the efficiency dimension into space and com-
putation efficiency means we can express con-
flicts and cooperation more precisely and can
thus reduce false conflicts and cooperation.
The values of categories should be the union
of their subcategories, as in the case of effi-
ciency shown in Table 3.

The model is useful when initially evaluat-
ing requirements conflicts and cooperation.
However, it assumes worst- and best-case sce-
narios, so its values are conservative. In prac-
tice, this leads to identifying numerous false

5 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Table 2
Model of potential conflict and cooperation*

Requirement Effect
attribute

Functionality Efficiency Usability Reliability Security Recoverability Accuracy Maintainability

Functionality + – + – – 0 0 –
Efficiency 0 +/– + – – 0 – –
Usability + +/– + + 0 + + 0
Reliability 0 0 + + 0 0 0 0
Security 0 – – + + 0 0 0
Recoverability 0 – + + 0 + 0 0
Accuracy 0 – + 0 0 0 + 0
Maintainability 0 0 0 + + 0 0 +

*+ represents a positive effect; – represents a negative effect; 0 represents no effect

Table 3
Refined cooperation and conflict model

Attribute Effect

Functionality Efficiency Usability Reliability Security Recoverability Accuracy Maintainability

Space Computation
Space efficiency 0 + – 0 – 0 0 – –
Computation 0 – + + – – 0 – –
efficiency

conflicts and cooperation. Eliminating them
by knowing about trace dependencies among
requirements becomes critical.

Identifying dependencies among
requirements

As systems evolve, it becomes increasingly
ineffective to maintain traceability informa-
tion. RT in practice often suffers from the
enormous effort and complexity of creating
and maintaining traces. It also suffers from in-
complete trace information that can’t assist
engineers in real-world problems. We thus de-
veloped a tool-supported trace analysis tech-
nique1,10 that’s suited for evaluating the im-
pact of new or changing requirements in large,
highly complex systems that no single person
can understand. Our trace analyzer uses test-
ing to generate trace dependencies. If any two
requirements affect the same part of a system,
then their testing executes some of the same
lines of code. Trace dependencies are created
among requirements if their test scenarios ex-
ecute the same or similar lines of code.

As input, the trace analyzer requires the
user to associate requirements with test scenar-
ios. Semantic and syntactic differences among
requirements are irrelevant to determine trace
dependencies. Only the difference between any
given requirement and the system is relevant (n
differences instead of n2). Furthermore, using
informal language isn’t a problem because a re-
quirement’s meaning is captured in the form of
attributes and test scenarios only.

The trace analyzer’s key benefit is that it
separates concerns during trace analysis so
that you don’t have to understand the rela-
tionships among all requirements. Rather, you
need only understand the individual relation-
ship between one requirement and its attrib-
utes and test scenarios—one requirement at a
time, independently. The downside is that the
trace analyzer detects trace dependencies
among requirements only if it can map them
to the system. Consequently, this approach ap-
plies only to product requirements—it ex-
cludes process-related requirements such as
budgets or schedules.

Consider again the three VOD require-
ments discussed in Figure 1. Having identified
test scenarios for these requirements, it’s then
straightforward to execute the scenarios. Fig-
ure 3 depicts this schematically in the form of
arrows representing execution paths. For ex-

ample, we can test the efficiency requirement
demanding that a movie start within one sec-
ond by clicking on the VOD player’s “start
movie” button and monitoring its execution
path (the upper-left blue path in Figure 3). The
other two requirements follow their own exe-
cution paths during testing.

If more than one test scenario exists for a
requirement, then its execution path is simply
the combination of all individual paths (where
the ordering is irrelevant). Once testing is
complete, we infer trace dependencies among
the three requirements in Figure 3 through
their overlapping execution paths (called foot-
prints).1,10 Figure 3 shows that R1 and R6’s
footprints overlap. This implies some trace de-
pendency between the efficiency (R6) and
functionality (R1) requirements. There’s no
overlap between the footprints for R6 and R2,
implying there’s no trace dependency.

Filtering cooperation instances and conflicts
among requirements

We now use knowledge of trace dependen-
cies to disregard attribute conflicts and coop-
eration that affect different parts of the sys-
tem. We interpret the trace dependency’s
meaning based on how much the require-
ments’ footprints overlap. The overlap doesn’t
indicate conflict or cooperation, but knowing
that there’s no overlap lets us eliminate falsely
identified conflicts or cooperation.

Figure 4 depicts different possible overlaps.
The two extremes are a complete overlap in

N o v e m b e r / D e c e m b e r 2 0 0 4 I E E E S O F T W A R E 5 5

R6: One second max to
start playing a movie

(efficiency/time behavior)

R1: Play movie automatically
after selection from list

(functionality)

R2: Users should be able to
display textual information

about a selected movie (functionality)

Figure 3. Execution
paths (footprints) of
three VOD requirements.

the footprints of two requirements (Figure 4a)
or no overlap (Figure 4b)—we found that the
latter occurred frequently but the former did
not. A complete overlap among requirements
implies that the requirements are either identi-
cal or so closely intertwined that their execu-
tion can’t distinguish them. Given that re-
quirements define their scope and context
rather arbitrarily, it’s more likely that require-
ments overlap only partially. In this case, we
distinguish between two scenarios: a footprint
being a subset of the other (Figure 4c and 4d)
and both footprints intersecting with one an-
other but also having parts not shared (Figure
4e and 4f). Both scenarios are very likely, but
the former has the advantage that the overlap
is complete in one direction.

For example, R6 and R1 in Figure 3 over-
lap such that R1’s footprint is a subset of R6’s
footprint. Thus, the functionality “play movie
automatically after selection” (R1) overlaps
fully with the efficiency requirement (R6).
This implies that it must execute in less than
one second to satisfy the efficiency require-
ment. If the functionality requirement’s foot-
print doesn’t overlap completely, then this
would weaken the trace dependency in that
only a part of the functionality must execute in
less than one second but we don’t know which
part of the functionality that is. As another ex-
ample, R6 doesn’t overlap with R2 (“display
textual information about movies”), implying
that the efficiency requirement doesn’t con-
strain functionality.

The trade-off among requirements is most
meaningful if footprints overlap fully or not at

all. Partial overlaps represent gray zones for
the trade-off analysis. For example, R1’s foot-
print is a subset of R6, implying that R1 over-
laps with only part of R6. Although R6 de-
scribes an efficiency requirement, we don’t
know which subset of that requirement this
particular part describes. So, the less overlap
between any two requirements, the less mean-
ingful the trace dependency between them.

We measure the weight of trace dependen-
cies by the percentage of their overlap. For ex-
ample, R1 overlaps fully with R6, implying a
trace dependency with a weight of 100. On
the contrary, R1 doesn’t overlap with R2, so
its trace dependency has a weight of 0. In be-
tween, R6 overlaps roughly 60 percent with
R1, which implies that 60 percent of R6’s code
overlaps with R1.

Figure 4 also displays the effect of different
overlaps (that is, weighted dependencies) in
case of efficiency and functionality attribute
conflicts. If the efficiency and functionality re-
quirements overlap fully, the attribute conflict
applies. However, if the requirements don’t
overlap, their attribute conflicts can’t be re-
quirements conflicts. Depending on direction-
ality and the degree of overlap, the require-
ments conflict weakens.

Trade-off among multiple requirements
Requirements express expectations they

want to satisfy. For example, the efficiency re-
quirement R6 wants a one-second response
time when starting a movie. The functionality
requirement R1 wants a feature for playing a
movie after selecting it (see the right side of

5 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Functionality

Efficiency

Strong conflict No conflict Weak conflict Strong conflict Very weak conflict Strong conflict

(a) (b) (c) (d) (e) (e)

Strong conflict

Efficiency to
functionality

Impact
on

attribute
conflicts

Functionality
to efficiency

No conflict Strong conflict Weak conflict Very weak conflict Weak conflict

Requirements
overlap

Efficiency,
functionaltiy

Functionality

Efficiency
Efficiency

Functionality

Efficiency

Functionality

Efficiency

Functionality

Figure 4. Overlaps
among requirements
and the impact on
attribute conflicts:
(a) complete overlap;
(b) no overlap; (c)
subset overlap, where
functionality is a subset
of efficiency; (d) subset
overlap, where
efficiency is a subset
of functionality; (e) a
small amount of
overlap; (f) strong
overlap.

N o v e m b e r / D e c e m b e r 2 0 0 4 I E E E S O F T W A R E 5 7

Figure 5). Requirements conflict and cooper-
ate, however, on the basis of causal relation-
ships among them—as such, there’s no conflict
in that R1 wants more functionality, which
likely reduces efficiency (that is, this is just an
effect). However, there’s a potential conflict in
that R1 causes less efficiency while R6 wants
more efficiency.

Figure 5 explores this conflict in the context
of potential new requirements. For instance, a
stakeholder might want to also have the VOD
run on handheld, mobile devices. This added
flexibility likely causes less efficiency because
handheld devices are computationally less
powerful. Thus, this new requirement poten-
tially conflicts with R6 because it will become
harder to satisfy the one-second response time
(note that the new goal affects the entire VOD
system, so there’s a trace dependency between
the new requirement and both R1 and R6).

Our automated trace-analyzer technique
doesn’t require us to write code for this new
requirement to eliminate false positives. The
developer only hypothesizes which code the
new requirement affects. The trace analysis
then informs the developer about the new re-
quirement’s impact on all other requirements.

In the example, the relationship between
the new requirement and the functionality re-
quirement R1 is particularly interesting. Both
cause less efficiency, which seems negative, but
it’d be incorrect to define this as a conflict be-
cause less efficiency isn’t necessarily a problem

(neither wants more efficiency). Therefore, we
define both requirements as having synony-
mous effects on the same part of the system
(that is, they similarly lessen efficiency).

Now consider how to resolve the efficiency
conflict between the new requirement and R6.
One option is to reduce image quality on low-
speed devices, which causes more efficiency.
Clearly, this option cooperates with R6 in sat-
isfying the one-second response time because
the option causes more efficiency. The effect of
the option, however, contradicts the function-
ality requirement and the new goal. As such,
we can say they have antonymous effects on
the same part of the system.

Conflicts, cooperation, and synonymous
and antonymous effects are computed auto-
matically. The example, however, demon-
strates that it might be easier to define only a
requirement’s effect and not its attributes. For
example, it’s somewhat difficult to categorize
the new goal as an attribute. We thus only de-
fine its effect of reducing efficiency and ignore
its attribute. This gives the user added flexibil-
ity in how to define attributes and their effects.

O ur approach is conservative in that it
eliminates only false conflicts and co-
operation. It’s also highly scalable—it

doesn’t require understanding the interdepen-
dencies among requirements, because the input
of attributes and test scenarios for requirements

New goal: runable on mobile devices

–Efficiency

Option: downgrade image
quality on low-speed devices

R1: Play movie automatically after selection

Conflict

+Efficiency
Cooperation

Option

R6: One second max to start playing a movie

+Efficiency

+Functionality

Conflict

–Efficiency

causes

Synonymous

Antonymous

Antonymous

Cooperation/
conflict model

causes

causes wants

wants

Figure 5. Trade-off
among multiple
requirements.

5 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

can be defined independently for every require-
ment. Consequently, our approach generates a
reduced, weighted list of potential conflicts and
cooperation that is significantly shorter than
the initial list. Although up to n2 potential con-
flicts might exist among requirements, experi-
ence reports have shown few factual ones. Our
largely automated and tool-supported ap-
proach thus spares users the costly and highly
error-prone exploration of many false conflicts
and cooperation. Future work will extend the
list of existing software attributes to include
subcategories, as discussed in our example of
subcategorizing efficiency into space and per-
formance. Furthermore, we intend to investi-
gate how to complement our requirements
traceability approach with other approaches,
since our approach requires a testable system
that isn’t readily available early on.

References
1. A. Egyed and P. Grünbacher, “Automating Require-

ments Traceability: Beyond the Record & Replay Para-
digm,” Proc. 17th IEEE Int’l Conf. Automated Software
Eng. (ASE 02), IEEE CS Press, 2002, pp. 163–171.

2. O.C.Z. Gotel and A.C.W Finkelstein, “An Analysis of
the Requirements Traceability Problem,” Proc. 1st Int’l
Conf. Requirements Eng. (ICRE), IEEE CS Press, 1994,
pp. 94–101.

3. B. Ramesh and M. Jarke, “Toward Reference Models
for Requirements Traceability,” IEEE Trans. Software
Eng., vol. 27, no. 1, 2001, pp. 58–93.

4. N. Medvidovic et al., “Bridging Models across the Soft-
ware Lifecycle,” J. Systems and Software, vol. 48, no.
3, 2003, pp. 199–215.

5. A. Egyed and P. Grünbacher, “Towards Understanding
Implications of Trace Dependencies among Quality Re-
quirements,” Proc. 2nd Int’l Workshop Traceability in
Emerging Forms of Software Eng. (TEFSE 2003), 2003;
www.soi.city.ac.uk/~gespan/paper2.pdf.

6. K. Dohyung, “Java MPEG Player,” 1999, http://peace.
snu.ac.kr/dhkim/java/MPEG.

7. ISO/IEC-9126, Software Product Evaluation—Quality
Characteristics and Guidelines for Their Use, ISO, 1991.

8. B.W. Boehm and H. In, “Identifying Quality-Require-
ment Conflicts,” IEEE Software, vol. 13, no. 2, 1996,
pp. 25–35.

9. L. Chung et al., Non-Functional Requirements in Soft-
ware Engineering, Kluwer, 2000.

10. A. Egyed, “A Scenario-Driven Approach to Trace De-
pendency Analysis,” IEEE Trans. Software Eng., vol.
29, no. 2, 2003, pp. 116–132.

11. S. Robertson and J. Robertson, Mastering the Require-
ments Process, Addison-Wesley, 1999.

12. L. Chung, D. Gross, and E. Yu, “Architectural Design
to Meet Stakeholder Requirements,” Software Architec-
ture, P. Donohue, ed., Kluwer, 1999, pp. 545–564.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

About the Authors

Alexander Egyed is a research scientist at Teknowledge Corp. His research interests in-
clude requirements engineering, incremental and iterative software modelling (transformation
and analysis), traceability, and simulation. He received his PhD in computer science from the
University of Southern California. He is a member of the IEEE, IEEE Computer Society, ACM,
and ACM SIGSOFT. Contact him at Teknowledge Corp., 4640 Admiralty Way, Ste. 1010, Marina
Del Rey, CA 90292; aegyed@teknowledge.com.

Paul Grünbacher is an associate professor at Johannes Kepler University and a re-
search associate at the Center for Software Engineering at the University of Southern Califor-
nia. His research interests include requirements engineering, computer-supported cooperative
work, and automated software engineering. He received his PhD in computer science and eco-
nomics from the University of Linz. He is a member of the IEEE, IEEE Computer Society, ACM,
and ACM SIGSOFT. Contact him at Systems Engineering and Automation, Johannes Kepler Univer-
sität Linz, Altenbergerstr. 69, 4040 Linz; paul.gruenbacher@jku.at.

IEEE Pervasive Computing...

delivers the latest developments

in pervasive, mobile, and

ubiquitous computing. With

content that’s accessible and

useful today, the quarterly

publication acts as a catalyst for

realizing the vision of pervasive

(or ubiquitous) computing Mark

Weiser described more than a

decade ago—the creation of

environments saturated with

computing and wireless

communication yet gracefully

integrated with human users.

Editor in Chief: M. Satyanarayanan
Carnegie Mellon University

Associate EICs: Roy Want, Intel Research;
Tim Kindberg, HP Labs; Gregory Abowd,
Georgia Tech; Nigel Davies, Lancaster University
and Arizona University

UPCOMING ISSUES:

✔ Energy Harvesting and
Conservation

✔ The Smart Phone

✔ Ubiquitous Computing
in Sports

✔ Rapid Prototyping

SUBSCRIBE NOW! www.computer.org/pervasive/subscribe.htm

MOBILE AND UBIQUITOUS SYSTEMS

